Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.832
Filter
1.
Hum Genomics ; 18(1): 46, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730490

ABSTRACT

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


Subject(s)
DNA Copy Number Variations , Genetic Testing , High-Throughput Nucleotide Sequencing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , India , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Female , Male , Molecular Probes/genetics
2.
BMJ Open ; 14(5): e082699, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692720

ABSTRACT

INTRODUCTION: Familial hypercholesterolaemia (FH) is an autosomal dominant inherited disorder of lipid metabolism and a preventable cause of premature cardiovascular disease. Current detection rates for this highly treatable condition are low. Early detection and management of FH can significantly reduce cardiac morbidity and mortality. This study aims to implement a primary-tertiary shared care model to improve detection rates for FH. The primary objective is to evaluate the implementation of a shared care model and support package for genetic testing of FH. This protocol describes the design and methods used to evaluate the implementation of the shared care model and support package to improve the detection of FH. METHODS AND ANALYSIS: This mixed methods pre-post implementation study design will be used to evaluate increased detection rates for FH in the tertiary and primary care setting. The primary-tertiary shared care model will be implemented at NSW Health Pathology and Sydney Local Health District in NSW, Australia, over a 12-month period. Implementation of the shared care model will be evaluated using a modification of the implementation outcome taxonomy and will focus on the acceptability, evidence of delivery, appropriateness, feasibility, fidelity, implementation cost and timely initiation of the intervention. Quantitative pre-post and qualitative semistructured interview data will be collected. It is anticipated that data relating to at least 62 index patients will be collected over this period and a similar number obtained for the historical group for the quantitative data. We anticipate conducting approximately 20 interviews for the qualitative data. ETHICS AND DISSEMINATION: Ethical approval has been granted by the ethics review committee (Royal Prince Alfred Hospital Zone) of the Sydney Local Health District (Protocol ID: X23-0239). Findings will be disseminated through peer-reviewed publications, conference presentations and an end-of-study research report to stakeholders.


Subject(s)
Hyperlipoproteinemia Type II , Primary Health Care , Humans , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/therapy , Hyperlipoproteinemia Type II/genetics , Primary Health Care/methods , Genetic Testing/methods , Research Design , New South Wales , Early Diagnosis
3.
J Cancer Res Clin Oncol ; 150(5): 227, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700789

ABSTRACT

INTRODUCTION: Chordoma is a rare slow-growing tumor that occurs along the length of the spinal axis and arises from primitive notochordal remnants (Stepanek et al., Am J Med Genet 75:335-336, 1998). Most chordomas are sporadic, but a small percentage of cases are due to hereditary cancer syndromes (HCS) such as tuberous sclerosis 1 and 2 (TSC1/2), or constitutional variants in the gene encoding brachyury T (TBXT) (Pillay et al., Nat Genet 44:1185-1187, 2012; Yang et al., Nat Genet 41:1176-1178, 2009). PURPOSE: The genetic susceptibility of these tumors is not well understood; there are only a small number of studies that have performed germline genetic testing in this population. METHODS: We performed germline genetic in chordoma patients using genomic DNA extracted by blood or saliva. CONCLUSION: We report here a chordoma cohort of 24 families with newly found germline genetic mutations in cancer predisposing genes. We discuss implications for genetic counseling, clinical management, and universal germline genetic testing for cancer patients with solid tumors.


Subject(s)
Chordoma , Fetal Proteins , Genetic Predisposition to Disease , Germ-Line Mutation , T-Box Domain Proteins , Humans , Chordoma/genetics , Chordoma/pathology , Male , Female , Adult , Cohort Studies , Middle Aged , Aged , Young Adult , Adolescent , Genetic Testing/methods
4.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747911

ABSTRACT

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Pilot Projects , Genetic Testing/standards , Genetic Testing/methods , Neonatal Screening/standards , Neonatal Screening/methods , China , Dried Blood Spot Testing/standards , Dried Blood Spot Testing/methods , Quality Assurance, Health Care , Laboratories, Clinical/standards , Survival of Motor Neuron 1 Protein/genetics
5.
JAMA Netw Open ; 7(5): e2410832, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38743425

ABSTRACT

Importance: Polygenic embryo screening (PES) is a novel technology that estimates the likelihood of developing future conditions (eg, diabetes or depression) and traits (eg, height or cognitive ability) in human embryos, with the goal of selecting which embryos to use. Given its commercial availability and concerns raised by researchers, clinicians, bioethicists, and professional organizations, it is essential to inform key stakeholders and relevant policymakers about the public's perspectives on this technology. Objective: To survey US adults to examine general attitudes, interests, and concerns regarding PES use. Design, Setting, and Participants: For this survey study, data were collected from 1 stratified sample and 1 nonprobability sample (samples 1 and 2, respectively) between March and July 2023. The surveys measured approval, interest, and concerns regarding various applications of PES. In the second sample, presentation of a list of potential concerns was randomized (presented at survey onset vs survey end). The survey was designed using Qualtrics and distributed to participants through Prolific, an online sampling firm. Sample 1 was nationally representative with respect to gender, age, and race and ethnicity; sample 2 was recruited without specific demographic criteria. Analyses were conducted between March 2023 and February 2024. Main Outcomes and Measures: Participants reported their approval, interest, and concerns regarding various applications of PES and outcomes screened (eg, traits and conditions). Statistical analysis was conducted using independent samples t tests and repeated-measures analyses of variance. Results: Of the 1435 respondents in sample 1, demographic data were available for 1427 (mean [SD] age, 45.8 [16.0] years; 724 women [50.7%]). Among these 1427 sample 1 respondents, 1027 (72.0%) expressed approval for PES and 1169 (81.9%) expressed some interest in using PES if already undergoing in vitro fertilization (IVF). Approval among these respondents for using PES for embryo selection was notably high for physical health conditions (1109 [77.7%]) and psychiatric health conditions (1028 [72.0%]). In contrast, there was minority approval for embryo selection based on PES for behavioral traits (514 [36.0%]) and physical traits (432 [30.3%]). Nevertheless, concerns about PES leading to false expectations and promoting eugenic practices were pronounced, with 787 of 1422 (55.3%) and 780 of 1423 (54.8%) respondents finding them very to extremely concerning, respectively. Sample 2 included 192 respondents (mean [SD] age 37.7 [12.2] years; 110 men [57.3%]). These respondents were presented concerns at survey onset (n = 95) vs survey end (n = 97), which was associated with less approval (28-percentage point decrease) and more uncertainty (24 percentage-point increase) but with only slightly higher disapproval (4 percentage-point increase). Conclusions and Relevance: These findings suggest that it is critical for health care professionals and medical societies to consider and understand the perspectives of diverse stakeholders (eg, patients undergoing IVF, clinicians, and the general public), given the absence of regulation and the recent commercial availability of PES.


Subject(s)
Public Opinion , Humans , Female , Adult , Male , Middle Aged , Surveys and Questionnaires , United States , Multifactorial Inheritance , Genetic Testing/statistics & numerical data , Genetic Testing/methods
7.
Lipids Health Dis ; 23(1): 136, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715054

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is one of the most common autosomal dominant diseases. FH causes a lifelong increase in low-density lipoprotein cholesterol (LDL-C) levels, which in turn leads to atherosclerotic cardiovascular disease. The incidence of FH is widely underestimated and undertreated, despite the availability and effectiveness of lipid-lowering therapy. Patients with FH have an increased cardiovascular risk; therefore, early diagnosis and treatment are vital. To address the burden of FH, several countries have implemented national FH screening programmes. The currently used method for FH detection in Lithuania is mainly based on opportunistic testing with subsequent cascade screening of index cases' first-degree relatives. METHODS: A total of 428 patients were included in this study. Patients with suspected FH are referred to a lipidology center for thorough evaluation. Patients who met the criteria for probable or definite FH according to the Dutch Lipid Clinic Network (DLCN) scoring system and/or had LDL-C > = 6.5 mmol/l were subjected to genetic testing. Laboratory and instrumental tests, vascular marker data of early atherosclerosis, and consultations by other specialists, such as radiologists and ophthalmologists, were also recorded. RESULTS: A total of 127/428 (30%) patients were genetically tested. FH-related mutations were found in 38.6% (n = 49/127) of the patients. Coronary artery disease (CAD) was diagnosed in 13% (n = 57/428) of the included patients, whereas premature CAD was found in 47/428 (11%) patients. CAD was diagnosed in 19% (n = 9/49) of patients with FH-related mutations, and this diagnosis was premature for all of them. CONCLUSIONS: Most patients in this study were classified as probable or possible FH without difference of age and sex. The median age of FH diagnosis was 47 years with significantly older females than males, which refers to the strong interface of this study with the LitHir programme. CAD and premature CAD were more common among patients with probable and definite FH, as well as those with an FH-causing mutation. The algorithm described in this study is the first attempt in Lithuania to implement a specific tool which allows to maximise FH detection rates, establish an accurate diagnosis of FH, excluding secondary causes of dyslipidaemia, and to select patients for cascade screening initiation more precisely.


Subject(s)
Algorithms , Cholesterol, LDL , Hyperlipoproteinemia Type II , Receptors, LDL , Humans , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/blood , Lithuania/epidemiology , Male , Female , Middle Aged , Adult , Receptors, LDL/genetics , Cholesterol, LDL/blood , Genetic Testing/methods , Mass Screening/methods , Aged , Mutation , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood
8.
Cancer Prev Res (Phila) ; 17(5): 193-195, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693900

ABSTRACT

Improved cancer screening and treatment programs have led to an increased survivorship of patients with cancer, but consequently also to the rise in number of individuals with multiple primary tumors (MPT). Germline testing is the first approach investigating the cause of MPT, as a positive result provides a diagnosis and proper clinical management to the affected individual and their family. Negative or inconclusive genetic results could suggest non-genetic causes, but are negative genetic results truly negative? Herein, we discuss the potential sources of missed genetic causes and highlight the trove of knowledge MPT can provide. See related article by Borja et al., p. 209.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Neoplasms, Multiple Primary , Humans , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/pathology , Neoplasms, Multiple Primary/diagnosis , Genetic Testing/methods , Germ-Line Mutation , Early Detection of Cancer/methods , Missed Diagnosis/statistics & numerical data
10.
PLoS One ; 19(5): e0297914, 2024.
Article in English | MEDLINE | ID: mdl-38691546

ABSTRACT

Inherited cardiovascular diseases are rare diseases that are difficult to diagnose by non-expert professionals. Genetic analyses play a key role in the diagnosis of these diseases, in which the identification of a pathogenic genetic variant is often a diagnostic criterion. Therefore, genetic variant classification and routine reinterpretation as data become available represent one of the main challenges associated with genetic analyses. Using the genetic variants identified in an inherited cardiovascular diseases unit during a 10-year period, the objectives of this study were: 1) to evaluate the impact of genetic variant reinterpretation, 2) to compare the reclassification rates between different cohorts of cardiac channelopathies and cardiomyopathies, and 3) to establish the most appropriate periodicity for genetic variant reinterpretation. All the evaluated cohorts (full cohort of inherited cardiovascular diseases, cardiomyopathies, cardiac channelopathies, hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic cardiomyopathy, Brugada syndrome, long QT syndrome and catecholaminergic polymorphic ventricular tachycardia) showed reclassification rates above 25%, showing even higher reclassification rates when there is definitive evidence of the association between the gene and the disease in the cardiac channelopathies. Evaluation of genetic variant reclassification rates based on the year of the initial classification showed that the most appropriate frequency for the reinterpretation would be 2 years, with the possibility of a more frequent reinterpretation if deemed convenient. To keep genetic variant classifications up to date, genetic counsellors play a critical role in the reinterpretation process, providing clinical evidence that genetic diagnostic laboratories often do not have at their disposal and communicating changes in classification and the potential implications of these reclassifications to patients and relatives.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Channelopathies/genetics , Channelopathies/diagnosis , Genetic Testing/methods , Genetic Variation , Cardiomyopathies/genetics , Cardiomyopathies/diagnosis , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Brugada Syndrome/genetics , Brugada Syndrome/diagnosis
11.
Reprod Domest Anim ; 59(5): e14581, 2024 May.
Article in English | MEDLINE | ID: mdl-38698693

ABSTRACT

A stop-gain mutation (rs715966442; BTA11: 1,02,463,944 nucleotide position) in transcription termination factor, RNA polymerase I (TTF1) gene causes abortion in Holstein Friesian (HF) cattle. A PCR-restriction fragment length polymorphism (PCR-RFLP)-based genetic test has been developed and validated to screen the TTF1 mutation locus in HF cattle. The mutation locus was screened in 80 HF and HF crossbreds using the protocol, which revealed two animals as carriers of the mutant TTF1 allele. The test employed is cost-effective, rapid and precise and can be utilized as an effective tool for the screening of TTF1 mutation carriers in HF cattle population.


Subject(s)
Abortion, Veterinary , Cattle Diseases , Mutation , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Animals , Cattle/genetics , Female , Abortion, Veterinary/genetics , Cattle Diseases/genetics , Cattle Diseases/diagnosis , Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/methods , Pregnancy , Genetic Testing/veterinary , Genetic Testing/methods , Transcription Factors/genetics
12.
BMC Pediatr ; 24(1): 330, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741052

ABSTRACT

BACKGROUND: Thalassemias represent some of the most common monogenic diseases worldwide and are caused by variations in human hemoglobin genes which disrupt the balance of synthesis between the alpha and beta globin chains. Thalassemia gene detection technology is the gold standard to achieve accurate detection of thalassemia, but in clinical practice, most of the tests are only for common genotypes, which can easily lead to missing or misdiagnosis of rare thalassemia genotypes. CASE PRESENTATION: We present the case of an 18-year-old Chinese female with abnormal values of routine hematological indices who was admitted for genetic screening for thalassemia. Genomic DNA was extracted and used for the genetic assays. Gap polymerase chain reaction and agarose gel electrophoresis were performed to detect HBA gene deletions, while PCR-reverse dot blot hybridization was used to detect point mutations in the HBA and HBB genes. Next-generation sequencing and third-generation sequencing (TGS) were used to identify known and potentially novel genotypes of thalassemia. We identified a novel complex variant αHb WestmeadαHb Westmeadαanti3.7/-α3.7 in a patient with rare alpha-thalassemia. CONCLUSIONS: Our study identified a novel complex variant that expands the thalassemia gene variants spectrum. Meanwhile, the study suggests that TGS could effectively improve the specificity of thalassemia gene detection, and has promising potential for the discovery of novel thalassemia genotypes, which could also improve the accuracy of genetic counseling. Couples who are thalassemia carriers have the opportunity to reduce their risk of having a child with thalassemia.


Subject(s)
alpha-Thalassemia , Humans , alpha-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Female , Adolescent , High-Throughput Nucleotide Sequencing , Genotype , Genetic Testing/methods , Point Mutation , Hemoglobins, Abnormal/genetics
14.
Genes Chromosomes Cancer ; 63(4): e23236, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656617

ABSTRACT

OBJECTIVE: This study aims to evaluate the developments in the testing of Kirsten Rat Sarcoma viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations across different cancer types and regions in Denmark from 2010 to 2022. STUDY DESIGN AND SETTING: Using comprehensive data from the Danish health registries, we linked molecular test results from the Danish Pathology Registry with cancer diagnoses from the Danish National Patient Registry between 2010 and 2022. We assessed the frequency and distribution of KRAS and BRAF mutations across all cancer types, years of testing, and the five Danish regions. RESULTS: The study included records of KRAS testing for 30 671 patients and BRAF testing for 30 860 patients. Most KRAS testing was performed in colorectal (78%) and lung cancer (18%), and BRAF testing in malignant melanoma (13%), colorectal cancer (67%), and lung cancer (12%). Testing rates and documentation mutational subtypes increased over time. Reporting of wildtype results varied between lung and colorectal cancer, with underreporting in lung cancer. Regional variations in testing and reporting were observed. CONCLUSION: Our study highlights substantial progress in KRAS and BRAF testing in Denmark from 2010 to 2022, evidenced by increased and more specific reporting of mutational test results, thereby improving the precision of cancer diagnosis and treatment. However, persistent regional variations and limited testing for cancer types beyond melanoma, colorectal, and lung cancer highlight the necessity for a nationwide assessment of the optimal testing approach.


Subject(s)
Genetic Testing , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Female , Humans , Male , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Denmark , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Genetic Testing/standards , Mutation , Neoplasms/genetics , Neoplasms/diagnosis , Precision Medicine/methods , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Registries
15.
BMC Pediatr ; 24(1): 263, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649921

ABSTRACT

BACKGROUND: The diagnosis of supernumerary X & Y chromosome variations has increased following the implementation of genetic testing in pediatric practice. Empirical evidence suggests that the delivery of the diagnosis has a lasting impact on how affected individuals and their parents perceive and adapt to the diagnosis. The purpose of this review is to synthesize the literature to obtain useful recommendations for delivering a pediatric diagnosis of a sex chromosome multisomy (SCM) based upon a growing body of quantitative and qualitative literature on patient experiences. METHODS: We conducted an integrative literature review using PubMed, Web of Science and CINAHL employing keywords "genetic diagnosis delivery," "genetic diagnosis disclosure," "sex chromosome aneuploidy," "Klinefelter syndrome" or ""47, XXY," "Jacob syndrome" or "47, XYY," "Trisomy X," "Triple X" or "47, XXX," and "48 XXYY from January 1, 2000, to October 31, 2023. RESULTS: Literature supports that patients and parents value the provision of up-to-date information and connection with supportive resources. Discussion of next steps of care, including relevant referrals, prevents perceptions of provider abandonment and commitment to ongoing support. Proactively addressing special concerns such as disclosing the diagnosis to their child, family, and community is also beneficial. Tables are provided for useful information resources, medical specialties that may be required to support patients, and common misconceptions that interfere with accurate information about the diagnosis. CONCLUSION: Patient experiences suggest there should be heightened attention to diagnosis delivery, in reference to the broader ethical and social impacts of a SCM diagnosis. We present recommendations for optimal disclosure of a SCM diagnosis in early and late childhood, adolescence, and young adulthood.


Subject(s)
Genetic Testing , Humans , Child , Adolescent , Genetic Testing/methods , Young Adult , Sex Chromosome Aberrations , Male , Evidence-Based Medicine , Chromosomes, Human, X , Chromosomes, Human, Y/genetics , Parents
16.
Ital J Pediatr ; 50(1): 85, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654395

ABSTRACT

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) are monogenic in some cases, however, there are still no clear guidelines on genetic testing in the clinical practice of SRNS in children. METHODS: Three hundred thirty-two children were diagnosed with SRNS, and all children underwent genetic testing, including gene panels and/or whole-exome/genome sequencing (WES/WGS), during treatment. We analysed the relationship between clinical manifestation and genotype, and compared different genetic testing methods' detection rates and prices. RESULTS: In this study, 30.12% (100/332) of children diagnosed with SRNS had monogenic causes of the disease. With 33.7% (122/332) of children achieving complete remission, 88.5% (108/122) received steroids combined with tacrolimus (TAC). In detectability, WES increased by 8.69% (4/46) on gene panel testing, while WGS increased by 4.27% (5/117) on WES, and WES was approximately 1/7 of the price of WGS for every further 1% increase in pathogenicity. CONCLUSIONS: We verified that steroids combined with TAC were the most effective option in paediatric SRNS. In detection efficiency, we found that WGS was the highest, followed by WES. The panel was the lowest, but the most cost-effective method when considering the economic-benefit ratio, and thus it should be recommended first in SRNS.


Subject(s)
Genetic Testing , Nephrotic Syndrome , Humans , Nephrotic Syndrome/genetics , Nephrotic Syndrome/drug therapy , Child , Genetic Testing/methods , Male , Female , Child, Preschool , Infant , Drug Resistance/genetics , Adolescent , Tacrolimus/therapeutic use , Retrospective Studies , Exome Sequencing
17.
Orphanet J Rare Dis ; 19(1): 173, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649872

ABSTRACT

BACKGROUND: Genetic testing can offer early diagnosis and subsequent treatment of rare neuromuscular diseases. Options for these tests could be improved by understanding the preferences of patients for the features of different genetic tests, especially features that increase information available to patients. METHODS: We developed an online discrete-choice experiment using key attributes of currently available tests for Pompe disease with six test attributes: number of rare muscle diseases tested for with corresponding probability of diagnosis, treatment availability, time from testing to results, inclusion of secondary findings, necessity of a muscle biopsy, and average time until final diagnosis if the first test is negative. Respondents were presented a choice between two tests with different costs, with respondents randomly assigned to one of two costs. Data were analyzed using random-parameters logit. RESULTS: A total of 600 online respondents, aged 18 to 50 years, were recruited from the U.S. general population and included in the final analysis. Tests that targeted more diseases, required less time from testing to results, included information about unrelated health risks, and were linked to shorter time to the final diagnosis were preferred and associated with diseases with available treatment. Men placed relatively more importance than women on tests for diseases with available treatments. Most of the respondents would be more willing to get a genetic test that might return unrelated health information, with women exhibiting a statistically significant preference. While respondents were sensitive to cost, 30% of the sample assigned to the highest cost was willing to pay $500 for a test that could offer a diagnosis almost 2 years earlier. CONCLUSION: The results highlight the value people place on the information genetic tests can provide about their health, including faster diagnosis of rare, unexplained muscle weakness, but also the value of tests for multiple diseases, diseases without treatments, and incidental findings. An earlier time to diagnosis can provide faster access to treatment and an end to the diagnostic journey, which patients highly prefer.


Subject(s)
Genetic Testing , Rare Diseases , Humans , Genetic Testing/methods , Adult , Male , Female , Middle Aged , Rare Diseases/diagnosis , Rare Diseases/genetics , Young Adult , Adolescent , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Patient Preference
18.
Pediatr Cardiol ; 45(5): 1023-1035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565666

ABSTRACT

Congenital long QT syndrome (LQTS) is an inherited arrhythmia syndrome associated with sudden cardiac death. Accurate interpretation and classification of genetic variants in LQTS patients are crucial for effective management. All patients with LQTS with a positive genetic test over the past 18 years (2002-2020) in our single tertiary pediatric cardiac center were identified. Reevaluation of the reported variants in LQTS genes was conducted using the American College of Genetics and Genomics (ACMG) guideline after refinement by the US ClinGen SVI working group and guideline by Walsh et al. on genetic variant reclassification, under multidisciplinary input. Among the 59 variants identified. 18 variants (30.5%) were reclassified. A significant larger portion of variants of unknown significance (VUS) were reclassified compared to likely pathogenic (LP)/pathogenic (P) variants (57.7% vs 9.1%, p < 0.001). The rate of reclassification was significantly higher in the limited/disputed evidence group compared to the definite/moderate evidence group (p = 0.0006). All LP/P variants were downgraded in the limited/disputed evidence group (p = 0.0057). VUS upgrades are associated with VUS located in genes within the definite/moderate evidence group (p = 0.0403) and with VUS present in patients exhibiting higher corrected QT intervals (QTc) (p = 0.0445). A significant number of pediatric LQTS variants were reclassified, particularly for VUS. The strength of the gene-disease association of the genes influences the reclassification performance. The study provides important insights and guidance for pediatricians to seek for reclassification of "outdated variants" in order to facilitate contemporary precision medicine.


Subject(s)
Genetic Testing , Long QT Syndrome , Humans , Long QT Syndrome/genetics , Child , Female , Male , Genetic Testing/methods , Genetic Variation , Adolescent , Child, Preschool , Infant , Mutation , Retrospective Studies
19.
Mol Genet Genomic Med ; 12(4): e2440, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634212

ABSTRACT

BACKGROUND: Malformations of cortical development (MCD) are a group of congenital disorders characterized by structural abnormalities in the brain cortex. The clinical manifestations include refractory epilepsy, mental retardation, and cognitive impairment. Genetic factors play a key role in the etiology of MCD. Currently, there is no curative treatment for MCD. Phenotypes such as epilepsy and cerebral palsy cannot be observed in the fetus. Therefore, the diagnosis of MCD is typically based on fetal brain magnetic resonance imaging (MRI), ultrasound, or genetic testing. The recent advances in neuroimaging have enabled the in-utero diagnosis of MCD using fetal ultrasound or MRI. METHODS: The present study retrospectively reviewed 32 cases of fetal MCD diagnosed by ultrasound or MRI. Then, the chromosome karyotype analysis, single nucleotide polymorphism array or copy number variation sequencing, and whole-exome sequencing (WES) findings were presented. RESULTS: Pathogenic copy number variants (CNVs) or single-nucleotide variants (SNVs) were detected in 22 fetuses (three pathogenic CNVs [9.4%, 3/32] and 19 SNVs [59.4%, 19/32]), corresponding to a total detection rate of 68.8% (22/32). CONCLUSION: The results suggest that genetic testing, especially WES, should be performed for fetal MCD, in order to evaluate the outcomes and prognosis, and predict the risk of recurrence in future pregnancies.


Subject(s)
DNA Copy Number Variations , Prenatal Diagnosis , Pregnancy , Female , Humans , Retrospective Studies , Prenatal Diagnosis/methods , Ultrasonography, Prenatal/methods , Genetic Testing/methods
20.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623660

ABSTRACT

BACKGROUND: Hereditary breast/ovarian cancer is associated with BRCA gene mutations. As large volumes of clinical data on BRCA variants are continuously updated, their clinical interpretation may change, leading to their reclassification. This study analyzed the class and proportion of the changed clinical interpretations of BRCA variants to validate the need for periodic reviews of these variants. METHODS: This retrospective study reinterpreted previously reported BRCA1 and BRCA2 exon variants according to the 2015 American College of Medical Genetics and Genomics guidelines and the clinical significance of the recent public genomic database. Reanalyzed results were obtained for patients tested for BRCA genetic mutation for 10 years and 4 months. RESULTS: We included data from 4,058 patients, with 595 having at least one pathogenic variant (P), likely pathogenic variant (LP), or variant of uncertain significance (VUS) at a detection rate of 14.66%. The numbers of exon and intron variants were 562 (87.81%) and 78 (12.19%), respectively. BRCA1 exhibited a significantly higher P/LP detection rate of 6.96% compared to that of BRCA2 at 6.89% (p < 0.001). Conversely, BRCA2 demonstrated a significantly higher VUS rate of 10.38% compared to that of BRCA1 at 5.08% (p < 0.001). Among BRCA1 mutations, substitutions were the most prevalent in P/LP and VUS. Among BRCA2 mutations, deletions were most prevalent in P/LP, and substitutions were most prevalent in VUS. Among the 131 patients with P/LP in BRCA1 exons, the clinical interpretation was reclassified in two cases (1.53%), one VUS and one benign/likely benign (B/LB), and 48 cases (48.00%) with VUS were reclassified; one to P/LP and 47 to B/LB. Among the 138 patients with P/LP in BRCA2 exons, the clinical interpretation was reclassified in six (4.35%), five to VUS, and one to B/LB, and all 74 with VUS were reclassified to B/LB. CONCLUSIONS: We determined the class and proportion of reclassified BRCA variants. In conclusion, reviews are required to provide clinical guidance, such as determining treatment direction and preventive measures in the future.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Female , Humans , Retrospective Studies , Genetic Predisposition to Disease , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Mutation , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Genetic Testing/methods , BRCA1 Protein/genetics , BRCA2 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...